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The generalized zonal method of Surinov and the method of successive approxima- 
tions are applied to the study of nonstationary radiative heat exchange. 

In this paper, we study nonstationary problems in the theory of radiative heat exchange 
in emitting systems of arbitrary configuration and sizes bounded by diffusion-emitting and 
reflecting surfaces and occupied by an absorbing, isotropically scattering medium at rest 
[l, 2]. 

The generalized statement of the problem, ignoring heat conduction in the system, is 
the determination of the temperature of the medium T(M, ~) as a function of point M 6 V and 
time ~6[0, ~l] from the solution of the Cauchy problem for the nonlinear integrodifferential 
equation of the temperature field in the medium [2-5]: 
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V 

s u b j e c t  to  the i n i t i a l  c o n d i t i o n  

T(M, O) = To(M~ (2) 

Then the o t h e r  (not  g iven)  r a d i a t i o n  c h a r a c t e r i s t i c s  a re  c a l c u l a t e d  from t h e i r  i n t e g r a l  r e p -  
r e s e n t a t i o n s  in  terms o f  the r a d i a t i o n  r e s o l v e n t s  [1,  2] .  

The f u n c t i o n  E~(N, T) in  (1) i s  the g e n e r a l i z e d  boundary r a d i a t i o n  c h a r a c t e r i s t i c  [2,  
3]. 

An e xa c t  s o l u t i o n  o f  (1) and (2) has not  been worked ou t .  In [4] the zonal  method o f  
solving nonstationary problems of this type  was first proposed, based on an average of ( I )  
over  the  zone volume and t he  s o l u t i o n  o f  the Cauchy problem fo r  a system of  o r d i n a r y  d i f f e r -  
e n t i a l  e q u a t i o n s .  This method was a p p l i e d  i n  [6~ to the numer ica l  s tudy o f  the n o n s t a t i o n a r y  
r a d i a t i o n  f i e l d  in  a c y l i n d r i c a l  chamber o f  f i n i t e  l eng th  occupied  by an abso rb ing ,  s c a t t e r -  
ing medium. 

In the present paper we give a new approach to the zonal solution of nonstationary 
problems in radiative heat exchange which applies both to the generalizedzonal method [5] 
and the method of successive approximations. The essence of the approach is that unlike the 
zonal  method f o r  n o n s t a t l o n a r y  r a d i a t i v e  hea t  exchange [3 ] ,  which i s  based  on t he  d i r e c t  use 
o f  the  i n t e g r o d i f f e r e n t i a l  e q u a t i o n  ( I ) ,  we use an i t e r a t i v e  p r o c e s s ,  o u t l i n e d  as f o l l ows .  

I. As a z e r o t h - o r d e r  approx ima t ion ,  we take  the t empera tu re  To(M, T) o f  the medium a t  
the initial instant of time ~ ffi 0. Thls approximation determines the temperature of the 
medium only as a function of the coordinates 

To (M, g) = To (M)- (3) 

2. I f  a t  the  t n i t l a l  t lme T ffi 0 the  t empera tu re  o f  the medium l s  glven as a con t inuous  
f u n c t i o n  of  p o i n t  M (M E V) then ,  d l v i d t n g  up V i n t o  a f i n i t e  number m of  zones (V ffi ~ Vj) 

l = l  

and c a r r y i n g  ou t  a zonal  average  o f  the  f o u r t h  power o f  the  a b s o l u t e  t empera tu re  f o r  T ffi 0 
a c c o r d i n g  to  the  e x p r e s s i o n  
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we can determine (using any of three possible forms of the generalized zonal method [3, 5]) 
the distribution qres.o(M, T)- 

The first step in the iterative process is the substitution in the equation 

e (M) p ( M ) .  aT(M,ax ~) = ~lrea tA,.H, ;~)-]-q(M, x;" (5) 

of the value ~res.o(M, T) obtained above. This equation is solved numerically for initial 
condition (2), and the first approximation for the temperature of the medium TI (M, T) is 
found as a function of the coordinates and time. 

3. The second step in the iterative process is an average of T~ (M, T) (fourth power of 
the absolute temperature of the medium) with respect to zones Vj (j = l, 2, ..., m), the 
calculation of ~res. I(M, z) with the help of the generalized zonal method and the solution 
of differential equation (5) for initial conditions (2). 

4. Using the temperature distribution Tk(M, T) obtained in the k-th step of the itera- 
tire process we calculate, using any of three forms of the generalized zonal ~method [3, 5], 
the volume resultant radiation density ~res.k(M, T) as a function of point M 6 V and time T. 
In particular, the first two forms of the generalized zonal method give 

~]res.k(M, T) = =(M) i~ , ,  ~, E - ' I f  '~, ~ 7"~,i (~) ... - -  . . (6 )  ,.-- t,,i(w (M, Fi)+ao 5m(A'!, V,) 4%T~(M.  ~ ) ] ,  
i:=. ~ i =,  

where n and m are the number of boundaries F i and volumes Vj of optically and energetically 
uniform zones into which we have divided up the radiating system. Ea,i(T) is the value of 
the generalized boundary radiation characteristic Ea(N, z) averaged over zones Fi (i = l, 2, 

4 , 
�9 .., n). T~,j(T) is the value of T~(M, T) averaged over the zones Vj (j = l, 2, ..., m) 
according to (4). 

Substituting the approximate value ~res.k(M, T) into (5), we find numerically the (k + 
l)-approximation Tk+, (M, T) for the temperature field of the medium as the solution of the 
Cauchy problem (5), (2). The iterative process is continued until two successive approxima- 
tions T k and Tk+, do not differ by more than a sufficiently small quantity c: 

ITh -- Th+~l < e. (7) 

If we assum~ that the functions Ea,i(x) (i = I, 2, ..., n) are continuous on the inter- 
val [0, T,] and that functions c(M), p(M), u(M), To(M) are continuous and bounded in V and 
q(M, ~) is continuous and bounded in V x [0, T i], it can be shown that the sequence of 
approximations Tk(M, z) uniformly Converges in a sufficiently small time interval [0, T2] 
[0, T,] to a unique solution T(M, T) of the Cauchy problem [3, 6]: 

OT(M, T,) 
[2  ~'~"' "~"" ~j,--4zor ,M, T)]-Fq(M, ~,, (8) c(M)p(M) 0"r =co(M) E~,,('~)IIr F~)+ao ~ ~ i,.":) .,M, "' ~' "" 
i = l  ~=1 

T(M, O) = To(M). (9) 

To prove this convergence, (8) with initial condition (9) is replaced by the equivalent 
Volterra integral equation 

T 

T(M, T)= To(M)4 1 I[q~..,(M, ~)+ q(M, ~)la~ (IO) 
c(M)p(M) 

and the principle of compact mapping is used [7]. All remaining unknown radiation character- 
istics are calculated using the generalized zonal method for a given temperature field T(M, 
�9 ) [3, 5]. 

Below we apply this method to the numerical solution of the nonstationary spatial radia- 
tive heat exchange in a cylindrical chamber of finite length, occupied by a uniform absorbing, 
isotropically scattering medium with attenuation factor k = ~ + S. 

329 



�9 . . =  - -  

t 

{ ,,., I 

V i ".',o \l 

] : ?!  
"~3 g # 0 2 z 

Fig. I. Nonstationary temperature distribu- 
tion 8(P, T*) on the symmtry axis of the sys- 
tem for a purely absorbing medium (p = 0): 
a) Bu = 1.0, b) Bu = 0.1 (curve I), Bu = I0 
(curve II). 

We consider the following formulation of the problem: at the initial time �9 = 0 the 
radiating system is taken away from the state of thermodynamic equilibrium by an instan- 
taneous change (jump) in the output of the internal heat sources q from value q = 0 to value 
q = (I/2)nc(M, 0) = 2aooT~. The ends F, and F2 of the cylinder are assumed to behave like 
perfect blackbodies and be isothermal at temperatures TI and T2 initially equal to the tem- 
perature of the medium To, while the curved surface Fs of cylinder is taken to be adiabatic: 
Eres(Ns, T) E 0. 

It is required to determine the nonstationary temperature distribution T(M, T) and the 
volume resultant radiation density nres(M, T) with respect to the volume V occupied by the 
radiating system. It is also required to determine the nonstationary surface density distri- 
bution of resultant radiation on the ends of the cylinder (FI, F2) and the temperature T(Ns, 
T) and the temperature jumps AT(Ns, T) on the curved surface Fa of the cylinder, 

From �9 (5), (6) for the temperature fZeld of the medium and the volume resultant 
radiation density, we have the following expressions suitable for calculation, and in dimen- 
sionless form: 

~Ok+. (M, z * )  
O'~* = qe,~ (M, ~*) + 0,5 (M E V; "~* E Ix,_,, x~ l); 

O~.,(M, x;_O=O(M, ~;-0 ( / =  1, 2 . . . .  ); O(M, 0 )=  1; 

q . . k  (M, x*) = - l  {4 + [O~ (x*) - l l~ '~ V)}--O~(M, x*), 

( l l )  

(12) 

(13) 

where 

4~~176 x; 0~ (M, "~*)= Tk(M, x*) 
~*= c~ To 

q~,k (M, T*) = ~s• x*) 
4aaoT~ 

(14) 

Result (13) for qres.k(M, T*) is obtained under the assumption that the radiating system con- 
sists of three boundary zones Fi (i ffi l, 2, 3) and one volume zone V. Dimensionless expres- 
s.ions for the other unknown radiation characteristics are derived with the help of the 
generalized zonal method [3]. 

The numerical solution of (ll) and (12) is done using a single-step difference method 

. . {+ %+~(M, ~ , ) = o ( ~ .  ~ ,_ , )+ [4 + ( o ~ ( ~ ; ) - 1 ) ~ . , ( , ~ ,  V)l --  oI.(,~, ~ ) + o , 5  h ; -  ~LO, (15) 

where 

O~ (Tt) = 0 ('~t--l); O~ (M, "~) O' (M, '~-1), if k = O, 

330 



e(;, ~ )  ~ - - - I - _  

~ , ,  

t , ,  z:! 
~ ~  g z 

r I 
i 

' I 
(o i / 5  

o �9 2 z 

Fig. 2. Nonstationary distributions 0(P, r*) and 
qres(P, ~*) on the sym~try axis for an absorbing, 
scattering medium (Bu = 1.0, p ~ 0): a) p = 0.4 
(curve I), p = 0.8 (curve II); b) p = 0.4. 

4 - *  1 4 .  * 4 * l  O~(~, ) = -~- [O~(~l.~) + O~ (~)  ; 
J 

1 
�9 ~-~)--r- O~ (M, ~z )], if k ~ I. . o~(M,~ ; )=  yiO~(M, " , 

Using (15) the temperature, of the medium 0(M, T*) was determined as a function of point 
M (M E V) at successive times T l = lh (~ = I, 2, .... ) with step size h = 0.05, and at each 

time interval [ l-i, ~l] no more than two iterations of (15) were required in order to satisfy 
(7) with c = 0.005. 

In the numerical calculations, the dimensionless height of the cylinder H = H'/R' was 
taken as fixed and equal to 4.0, while the Buger number Bu = kR' and the parameter p = B/k 
were allowed to vary as follows: Bu = 0.1; 1.0; I0.0; p = 0; 0.4; 0.8. The position of 
point M in the system was given by two dimensionless coordinates z and p, where z = z'/R' is 
the distance of point M from end Fa of the cylinder and p = 0'/R' is the distance of point M 
from the symmetry axis of the system. 

The numerical results are shown graphically in Figs. I-4. In Figs. I and 2 the nonsta- 
tionary temperature distribution 0(M, T*) and the resultant radiation volume density qres(M, 
T*) on the symmetry axis of the system are shown, and in Figs. 3 and 4 are shown the nonsta- 
tionary resultant radiation surface density distribution 0res(N~ , T*) = Eres(N~ , T*)/(OoT~) 
on surface F~ of the cylinder, as well as the temperature 0~(N~, T*) and temperature jumps 
A0(N3, T*)on the curved surface Fs. 

It follows from these graphs that" the radiating system evolves with time toward a sta- 
tionary state, with the rate of going into the stationary state slowing with an increase in 
the Buger number and with decrease of the parameter p. It is also seen from Fig. ! that for 
large values of T*, a nonuniformlty arises in the temperature distribution 0(M, ~*) with 
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Fig. 3. The dependence of Ores(N1, T*) and 8~(Ns, 
T*) on coordinates of points Nx, Ns and time T* 
(Bu = 1.0): Curve I: p = 0.4; curve II: p = 0.8. 
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Fig. 4. Nonstationary temperature jump 
d i s t r i b u t i o n  Ae(N3, -r~) on the  curved 
surface F3 of the cylinder, Bu = 1.0: 
Curve I: p = 0.4; curve II: p = 0.8. 

respect to height, and this nonuniformity becomes more pronounced near the ends of the cylin- 
der for large values of the Buger number (Bu = 10.0). In the planes z = const, the numerical 
results show that the temperature distribution %(M, ~*) and the resultant radiation volume 
density qres(M, ~*) are nearly uniform,~ with qres(M, T*) < 0 and increasing in absolute value 
with increasing T*. 

It is seen from Fig. 3a that the resultant radiation surface density Ores(N1, r*) is 
positive, increases with increasing T*, and at fixed T* is a decreasing function of coordinate 
p of point NI. We also note that %res(Nz , T*) = Ores(N2 , T*), where N~ C FI and N2 E F2 are 
congruent points. 

The numerical results for the temperature jump AS(N3, T*) on the curved surface F3 of the 
cylinder show that the stationary value Ae(Ns) approaches the value 0.5 with increasing p (for 
a given Bu) and with increasing Buger number for a given p. This result also follows directly 
from (II) through (13) because ~ (N3, V) ~ I and ~cl~(M, V) § 4 when Bu + ~ and p § I. 

NOTATION 

T(M, T), absolute temperature of the medium at point M and time T; nres, resultant radia- 
tion volume density; q, volume density of sources (sinks) of heat; Eu, generalized boundary 
radiation characteristic; Co, Stefan--Boltzmann constant; k, attenuation coefficient of the 
medium; u, volume absorption coefficient of the medium; B, volume scattering coefficient of 
the medium; c, specific heat capacity of the medium; p, density of the medium; E=,i, genera- 
lized boundary radiation characteristics averaged over zone Fi; T~, fourth power of the abso- 
lute temperature of the medium averaged over the volume zone Vj ; 8, dimensionless tempera- 

ture of the medium~ qres, dimensionless resultant radiation volume density; T*, dimensionless 
time; ~(i) and • resolvents; ~. and ~(;) , attenuating power of the medium; R', radius of 
cylinder; H, dimensionless height of the cylinder; Bu, Buger number; z, p, dimensinnless co- 
ordinates of a point; A%, dimensionless temperature jump on the curved surface of the cylinder. 
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HEATING OF SOLID SURFACES BY AN ELECTRIC ARC 

A. B. Demidovich, A. I. Zolotovskii, 
and V. D. Shimanovich 

UDC 536.629.7:537.523.5 

We have developed a calorimetric probe for measuring unsteady heat fluxes with 
a resolving time At < 10 -3 sec. We have determined the flux to solid surfaces 
from an electric arc stabilized by a rotating cylinder. 

An increase of the efficiency of high-temperature technological processes in many cases 
requires the use of intense sources for heating materials with a long operative life. Thanks 
to successes in producing jet arc plasmatrons, the problem of obtaining continuous heat flux 
densities q < 5"]03 W/cm 2 can be considered solved. Higher fluxes are achieved with a rela- 
tively low coefficient of utilization of the energy input [I-3]. In addition, the large 
dynamic head on the surface of a heated body limits the use of jet generators to solve prob- 
lems of the heat treatment of materials when a surface film of molten material is present. 

An arc plasma has a higher temperature and a lower flow velocity than a plasmatron jet. 
In view of this, it is of interest to investigate the creation of devices for heating the 
surfaces of bodies directly by an electric arc. The construction of one such plasmatron is 
described in [3]. In the present article we report the results of a study of the surface 
heating of bodies by using a similar device whose mode of operation is explained in Fig. la. 
The ends of the plasmatron electrodes were arranged in such a way that the plasma column was 
oriented parallel to the surface being heated 3. Its position in space is fixed by the rota- 
ting cylinder I, mounted above the surface being treated at a distance d, less than the dia- 
meter of the current-conducting column. Because of the viscosity of the surrounding medium, 
a rotating gas stream is formed around the cylinder which clamps the plasma column simul- 
taneously to the surface of the body and the cylinder. 

The temperature of the gas layer between the cylinder and the plasma column is deter- 
mined largely by the characteristics of the surrounding medium. Since the device operates 
in the open atmosphere, the temperature of the air layer will he relatively low, and thermal 
and electrical contacts between the rotating cylinder and plasma are negligible. It was 
shown experimentally that for currents in the range 30-80 A the arc is shunted onto a current- 
carrying cylinder 15 mm in diameter only at low rotational velocities n~5 rps. The dis- 
charge is not shunted at high velocities even for quite long (Z > 100 mm) cylinders. This 
permits a substantial simplification of the construction and an improvement of the opera- 
tional characteristics of the device to position the arc by replacing the dielectric cylinder 
with a metal one. The surfaces of large articles are heated by displacing the plasmatron 
with a special mechanical device in a direction perpendicular to the axis of the arc. 

The intensity of heating of samples was studied by a calorimetric measurement of the 
heat flux supplied to their surfaces. In most cases such measurements were performed with 
a probe in the form of a copper rod with a thermocouple pressed into it. The resolving time 
is determined by the distance from the collecting surface of the probe to the thermocouple. 
However, the indeterminacy of the position of the heat-sensitive layer in the body of the 
calorimeter, and the presence in it of appreciable voids, even with tight calking of the 
thermocouple with two wire outlets, prevented highly accurate measurements of intense un- 
steady heat fluxes. Additional calibration experiments have their own errors, and therefore 
do not permit a significant increase in the accuracy of the determination of the heat flux. 
A major flaw of the probe described is its slow response. As a consequence of the large size 
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